Probability density function |
|
Cumulative distribution function |
|
Notation | or |
---|---|
Parameters | k ∈ N1 — degrees of freedom |
Support | x ∈ [0, +∞) |
CDF | |
Mean | k |
Median | |
Mode | max{ k − 2, 0 } |
Variance | 2k |
Skewness | |
Ex. kurtosis | 12 / k |
Entropy | |
MGF | (1 − 2 t)−k/2 for t < ½ |
CF | (1 − 2 i t)−k/2 [1] |
In probability theory and statistics, the chi-squared distribution (also chi-square or χ²-distribution) with k degrees of freedom is the distribution of a sum of the squares of k independent standard normal random variables. It is one of the most widely used probability distributions in inferential statistics, e.g., in hypothesis testing or in construction of confidence intervals.[2][3][4][5] When there is a need to contrast it with the noncentral chi-squared distribution, this distribution is sometimes called the central chi-squared distribution.
The chi-squared distribution is used in the common chi-squared tests for goodness of fit of an observed distribution to a theoretical one, the independence of two criteria of classification of qualitative data, and in confidence interval estimation for a population standard deviation of a normal distribution from a sample standard deviation. Many other statistical tests also use this distribution, like Friedman's analysis of variance by ranks.
The chi-squared distribution is a special case of the gamma distribution.
Contents |
If Z1, ..., Zk are independent, standard normal random variables, then the sum of their squares,
is distributed according to the chi-squared distribution with k degrees of freedom. This is usually denoted as
The chi-squared distribution has one parameter: k — a positive integer that specifies the number of degrees of freedom (i.e. the number of Zi’s)
Further properties of the chi-squared distribution can be found in the box at the upper right corner of this article.
The probability density function (pdf) of the chi-squared distribution is
where Γ(k/2) denotes the Gamma function, which has closed-form values at the half-integers.
For derivations of the pdf in the cases of one and two degrees of freedom, see Proofs related to chi-squared distribution.
Its cumulative distribution function is:
where γ(k,z) is the lower incomplete Gamma function and P(k,z) is the regularized Gamma function.
In a special case of k = 2 this function has a simple form:
Tables of this distribution — usually in its cumulative form — are widely available and the function is included in many spreadsheets and all statistical packages. For a closed form approximation for the CDF, see under Noncentral chi-squared distribution.
It follows from the definition of the chi-squared distribution that the sum of independent chi-squared variables is also chi-squared distributed. Specifically, if {Xi}i=1n are independent chi-squared variables with {ki}i=1n degrees of freedom, respectively, then Y = X1 + ⋯ + Xn is chi-squared distributed with k1 + ⋯ + kn degrees of freedom.
The information entropy is given by
where ψ(x) is the Digamma function.
The Chi-squared distribution is the maximum entropy probability distribution for a random variate X for which is fixed, and is fixed. [6]
The moments about zero of a chi-squared distribution with k degrees of freedom are given by[7][8]
The cumulants are readily obtained by a (formal) power series expansion of the logarithm of the characteristic function:
By the central limit theorem, because the chi-squared distribution is the sum of k independent random variables with finite mean and variance, it converges to a normal distribution for large k. For many practical purposes, for k > 50 the distribution is sufficiently close to a normal distribution for the difference to be ignored.[9] Specifically, if X ~ χ²(k), then as k tends to infinity, the distribution of tends to a standard normal distribution. However, convergence is slow as the skewness is and the excess kurtosis is 12/k. Other functions of the chi-squared distribution converge more rapidly to a normal distribution. Some examples are:
A chi-squared variable with k degrees of freedom is defined as the sum of the squares of k independent standard normal random variables.
If Y is a k-dimensional Gaussian random vector with mean vector μ and rank k covariance matrix C, then X = (Y−μ)TC−1(Y−μ) is chi-squared distributed with k degrees of freedom.
The sum of squares of statistically independent unit-variance Gaussian variables which do not have mean zero yields a generalization of the chi-squared distribution called the noncentral chi-squared distribution.
If Y is a vector of k i.i.d. standard normal random variables and A is a k×k idempotent matrix with rank k−n then the quadratic form YTAY is chi-squared distributed with k−n degrees of freedom.
The chi-squared distribution is also naturally related to other distributions arising from the Gaussian. In particular,
The chi-squared distribution is obtained as the sum of the squares of k independent, zero-mean, unit-variance Gaussian random variables. Generalizations of this distribution can be obtained by summing the squares of other types of Gaussian random variables. Several such distributions are described below.
The noncentral chi-squared distribution is obtained from the sum of the squares of independent Gaussian random variables having unit variance and nonzero means.
The generalized chi-squared distribution is obtained from the quadratic form z′Az where z is a zero-mean Gaussian vector having an arbitrary covariance matrix, and A is an arbitrary matrix.
The chi-squared distribution X ~ χ²(k) is a special case of the gamma distribution, in that X ~ Γ(k/2, 2) (using the shape parameterization of the gamma distribution) where k/2 is an integer.
Because the exponential distribution is also a special case of the Gamma distribution, we also have that if X ~ χ²(2), then X ~ Exp(1/2) is an exponential distribution.
The Erlang distribution is also a special case of the Gamma distribution and thus we also have that if X ~ χ²(k) with even k, then X is Erlang distributed with shape parameter k/2 and scale parameter 1/2.
The chi-squared distribution has numerous applications in inferential statistics, for instance in chi-squared tests and in estimating variances. It enters the problem of estimating the mean of a normally distributed population and the problem of estimating the slope of a regression line via its role in Student’s t-distribution. It enters all analysis of variance problems via its role in the F-distribution, which is the distribution of the ratio of two independent chi-squared random variables, each divided by their respective degrees of freedom.
Following are some of the most common situations in which the chi-squared distribution arises from a Gaussian-distributed sample.
Name | Statistic |
---|---|
chi-squared distribution | |
noncentral chi-squared distribution | |
chi distribution | |
noncentral chi distribution |
The p-value is the probability of observing a test statistic at least as extreme in a chi-squared distribution. Accordingly, since the cumulative distribution function (CDF) for the appropriate degrees of freedom (df) gives the probability of having obtained a value less extreme than this point, subtracting the CDF value from 1 gives the p-value. The table below gives a number of p-values matching to χ2 for the first 10 degrees of freedom.
A p-value of 0.05 or less is usually regarded as statistically significant, i.e. the observed deviation from the null hypothesis is significant.
Degrees of freedom (df) | χ2 value [11] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1
|
0.004 | 0.02 | 0.06 | 0.15 | 0.46 | 1.07 | 1.64 | 2.71 | 3.84 | 6.64 | 10.83 |
2
|
0.10 | 0.21 | 0.45 | 0.71 | 1.39 | 2.41 | 3.22 | 4.60 | 5.99 | 9.21 | 13.82 |
3
|
0.35 | 0.58 | 1.01 | 1.42 | 2.37 | 3.66 | 4.64 | 6.25 | 7.82 | 11.34 | 16.27 |
4
|
0.71 | 1.06 | 1.65 | 2.20 | 3.36 | 4.88 | 5.99 | 7.78 | 9.49 | 13.28 | 18.47 |
5
|
1.14 | 1.61 | 2.34 | 3.00 | 4.35 | 6.06 | 7.29 | 9.24 | 11.07 | 15.09 | 20.52 |
6
|
1.63 | 2.20 | 3.07 | 3.83 | 5.35 | 7.23 | 8.56 | 10.64 | 12.59 | 16.81 | 22.46 |
7
|
2.17 | 2.83 | 3.82 | 4.67 | 6.35 | 8.38 | 9.80 | 12.02 | 14.07 | 18.48 | 24.32 |
8
|
2.73 | 3.49 | 4.59 | 5.53 | 7.34 | 9.52 | 11.03 | 13.36 | 15.51 | 20.09 | 26.12 |
9
|
3.32 | 4.17 | 5.38 | 6.39 | 8.34 | 10.66 | 12.24 | 14.68 | 16.92 | 21.67 | 27.88 |
10
|
3.94 | 4.86 | 6.18 | 7.27 | 9.34 | 11.78 | 13.44 | 15.99 | 18.31 | 23.21 | 29.59 |
P value (Probability)
|
0.95 | 0.90 | 0.80 | 0.70 | 0.50 | 0.30 | 0.20 | 0.10 | 0.05 | 0.01 | 0.001 |
Nonsignificant | Significant |
|